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ABSTRACT

The purpose of this investigation is to develop a new model for the acceleration

of the fast solar wind by nonlinear, time-dependent multidimensional MHD

simulations of waves in solar coronal holes. Computational studies indicate

that nonlinear waves are generated in coronal holes by torsional A1D4n waves.

These waves in addition to thermal conduction may contribute considerably to

the accelerate the solar wind. Specific goals of this proposal are to investigate

the generation of nonlinear solitary-like waves and their effect on solar wind

acceleration by numerical 2.5D MHD simulation of coronal holes with a broad

range of plasma and wave parameters; to study the effect of random disturbances

at the base of a solar coronal hole on the fast solar wind acceleration with a

more advanced 2.5D MHD model and to compare the results with the available

observations; to extend the study to a full 3D MHD simulation of fast solar wind

acceleration with a more realistic model of a coronal hole and solar boundary

conditions. The ultimate goal of the three year study is to model the fast solar

wind in a coronal hole, based on realistic boundary conditions in a coronal hole

near the Sun, and the coronal hole structure (i.e., density, temperature, and

magnetic field geometry) that will become available from the recently launched

SOHO spacecraft. We report on our study of the effects of slow magnetosonic

waves recently detected by EIT on the solar wind.

1. Introduction

To account for the observed properties of the solar wind Alfv4n waves were suggested as

a source of momentum and heat, and studied in the linear regime (e.g., Alazraki & Courtier

1971, Belcher 1971, Hollweg 1973, Jacques 1977, Davila 1985, Davila 1987, Ofman & Davila

1995). The WKB approximation is the standard approach to study the effect of the Alfv6n

waves on the solar wind. Recent linear models include many realistic features and consider

the propagation of three-dimensional Alfv6n in a stratified, thermally conductive solar wind

with WKB and non WKB fluctuations.

In order to consider fully the solar wind acceleration by transverse Alfv6n waves,

nonlinear effects must be included. This is necessary in order to couple the transverse
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motions and the gradients of the magnetic pressure into the longitudinal motions. Nonlinear

two-fluid one-dimensional MHD solar wind model with WKB Alfv6n waves were developed

and compared favorably with observations (e.g., Esser et al. 1997). However, with the

WKB approach the Alfv6n waves are not treated self consistently with the solar wind.

Nonlinear effects due to the Alfv6n waves in the solar wind, such as fast and slow waves

were deduced from the second order analysis of the MHD equations (Lou 1993). Recently,

self consistent nonlinear computations of the solar wind acceleration by Alf_'6n waves were

performed in one spatial dimension (Lau and Siregar 1996, Boynton & Torkelsson 1996)

and in two dimensions (Ong et al. 1997, Ofman & Davila 1997a, Oflnan & Davila 1998).

Ofman and Davila (1997a, 1998) (hereafter, OD) investigated the self-consistent

nonlinear effects due to Alfv6n waves in coronal holes via numerical solution of the nonlinear

2.5-D (3-D with azinmthal symmetry) resistive MHD equations in a spherical geometry

with an (r, 0)-inhomogeneous atmosphere and the hydrostatic initial state. They found that

solitary waves are driven by the Atfvdn waves in a stratified coronal hole. Ofman and Davila

(1997b) suggested that the solitary waves may explain the apparent broadening of ion

emission lines observed by the SOHO Ultraviolet Coronagraph Spectrometer (UVCS). The

waves that OD found propagate in a highly inhomogeneous radially divergent, dispersive,

and dissipative medium, and are more complex than the classical sound solitons. Therefore,

we refer to them as large amplitude nonlinear (LAN) waves.

Ofman, Nakariakov, & DeForest (1999) studied the propagation of slow magnetosonic

waves in plumes using the inviscid 1D linear wave equation, and the nonlinear 2D MHD

code in spherical geometry and found good qualitative agreement with the observed spatial

and temporal evolution of the fluctuations in plume brightness obtained by EIT.

The compressive viscosity coefficient, as calculated using Braginskii's theory (Braginskii

1965) in the solar corona is many orders of magnitude larger than the shear viscosity

coefficient (Porter, Klimchuk, & Sturock 1994, Ofman, Davila, & Steinolfson 1994) and

should strongly damp the propagation of the slow magnetosonic waves. For typical coronal

parameter, we find that the slow waves with frequencies in the few millihertz range will be

dissipated within one solar radius above the photosphere.

The contribution of the low frequency slow waves to heating depends on the amount

of energy flux available in these waves. The prevailing view based on Doppler shift

observations (Athay & White 1979) is that a slow wave energy flux of ,,_ 10 4 erg cm -2 s -1

that reaches the corona is not sufficient to balance the coronal energy losses. However,

Porter, Klimchuk, & Sturock claim that if the observed nonthermal Doppler broadening of

20-60 km s -1 of coronal emission lines (see, for example recent measurements of nonthermal

line widths with the SUMER instrument on SOHO reported by Warren et al. 1997, and
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Chae,Schuhle,&: Lemaire 1998) is attributed to slow waves, than the energy flux is greatly

underestimated. The direct observation of slow magnetosonic waves in plumes by EIT (e.g.,

DeForest and Gurman 1998) lends some support to the latter view.

2. Results

2.1. Dissipative Slow Magnetosonic Waves in Plumes

2.1.1. Dissipative MHD Model Equations

The main goal of the present numerical simulation of the slow magnetosonic waves in

plumes is to investigate the role of dissipation, plume structure, and nonlinearity on the

propagation of the waves. For this purpose we model the polar plume in the r - 0 plane

with a 2D MHD nonlinear code in spherical geometry, where r is along the solar radial

direction (r = 1 is the coronal boundary), and 0 is the latitudinal direction. We include

viscous (compressive) and resistive dissipation, and the polytropic energy equation. \Ve set

the polytropic index _, equal to 1. We plan to use more realistic energy equation in our
future studies.

The normalized MHD equations are

9p

0-7+ v. (pv) : 0,

0v =- 1 JxB V.H-- + (v. V)v E Vp- -- +
Ot p Frr2 p p
OB

9--i- = V x (v x B) + S-1V2B,

OT

cg-T+ v. VT= ('7- 1)(Sv + ST -- TV. v),

(1)

(2)

(3)

(4)

where I] is the viscous stress tensor (Braginskii 1965), Sv is the viscous heating term and Sr

is the resistive heating term. When ",/= 1 the source terms do not affect the temperature.

The quantities in the MHD equations are normalized with r _ r/Re, t ---, t/rA,

v --* V/VA, B --+ B/Bo, p _ P/Poo, P --+ P/Po. The physical parameters are the Lundquist

number S = fr/rA, the resistive time scale rr = 4rrR_/uc 2 (where u is the resistivity,

and c is the speed of light), the Alfv6n time scale TA = Re/vA, the Froude number

F_ = v2Ro/(GMe) (where G is the gravitational constant, and 2VIo is the solar mass),

the Euler number E_ po/(Poov2A) 2 2 {_,p= = C_/v A (-/3/2), the sound speed C_ = o/poo,

the Alfv_n speed VA = Bo/_. The values of the magnetic field Bo, pressure po, and

density poo are taken at the solar boundary of the plumes.
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Here,weare interestedin the dissipationof longitudinal waves.Therefor, weconsider
the radial componentof tile viscosity

[c92t.'r (cgvr ?)(! c9inr/.__.._20) j(v. n)r = -_.o Lor2 + \ or + Or (5)

where the compressive viscosity coefficient is given by (Braginskii 1965)

qo = 0.96n/vTTp, (6)

with the proton collision time given by

3v (k,G) /2
_-P= 4v/Tn)_e4 (7)

In the above, rnp is the proton mass, Tp is the proton temperature, e is the electron charge,

and A ,_ 20 is the Coulomb logarithm. For typical conditions at the base of the corona with

Tp = 1.4 x 10 6 K and n = 5 x l0 s cm -a we get "rp = 2.8 s. The collision time is two orders

of magnitude shorter than the typical slow wave period observed by EIT. At 1.2RQ the

density drops by a factor of --, 4 (assuming isothermal static atmosphere). This will result

in ion collision time of 11 s, about 55 times smaller than the wave period observed by EIT.

Thus, the plasma is in the collisional regime in the region of interest, and Landau damping

can be neglected there. The proton collision frequency becomes comparable to the wave

period (600 s) at about 3Ro.

Note that the compressive viscosity coefficient varies mainly with temperature and

can be written as 770= rlooT¢/2. In the present single-fluid MHD model we assume that

that T = Tp = T_, where T¢ is the electron temperature, and we use the normalization

qo ---' rTo/(RevAPoo). With this normalization we have 77o= fFJVA.

The heating due to the compressive viscosity is given by

2

S_, = _ rlo \ Or (8)

We calculate and plot the radial heating rate 2rrr2S,. for various cases discussed below.

2.1.2. Linear Theory of Slow Magnetosonic Waves in Viscous Fluid

Consider the linear 1D dynamics of slow magnetosonic waves propagating along the

vertical magnetic field in an isothermal atmosphere. The magnetic field is taken to be
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radially divergent. The atmosphere is spherically stratified by gravity with the equilibrium

background density given by

Po P00e [--_-('- n_-_/]= , (9)

where R.¢ is the solar radius, and H is the scale height, defined as H = 2kaTtg_z./(GM.ornH)

where kB is Boltzmann's constant, T the temperature, G the gravitational constant,

M o the Sun's mass and the hydrogen mass mH. The scale height can be estimated as

H(10acm) _ 61T(106K) (the factor in front of T is 51 when Helium is taken into account).

In spherical coordinates, the linear, spherical slow magnetosonic waves radially

propagating strictly along the magnetic field, with perturbations of plasma density p and

radial speed v_, are governed by the equations

i)p 1 0
o7_+ 7_ ("%_0 = o, (lO)

o_,. _op 4 O[lOPo-_ + C; _ + gp - -_r;o-_7r 7-ff (r2v,.) = 0, (11)
k c,,

where g = GMe/r 2 is the gravity acceleration and 7?0is the compressive viscosity coefficient,

and C_ is the constant sound speed (see, § 2.1.1 below). Perturbations of the magnetic field

and transversal components of the plasma velocity are not excited by the linear radially

propagating slow wave considered.

Equations (10) and (11) can be combined into the wave equation

c)2v_ C2___ [1 c) g_ 4 c) [1 c9 (r20V_'_]aoot_ Or 7_g (_'p°''') _, (Pf,0_)- 5_0N ;vg \ at/j = 0. (12)

Assuming solutions of the form f(r)e -_ and writing the equation in terms of the density
perturbation p gives

_co2 p C2 0 (cgp) 69p .4 Cs2 oq4pr 2 Or r'20-Tr - gO-Tr + z3r/° -- 0. (13)
w po Or 4

Since the viscosity is small we have used the ideal momentum equation to substitute for -_
Ot

in the viscous term. The viscosity is only important in regions of high gradients. Therefore,

we have kept only the highest order derivative of p in the viscous term. The solution of the

wave equation is of the form

[ "_ H°e[-_-H('-_')]eik'-i_t (14)
F

where k is complex, and z = r - Re.. Expression (14) shows that the absolute amplitude of

the density perturbations decreases with height, while the ratio of the density perturbations
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amplitude (14)and the local equilibrium densityvaluemay grow providedthat the viscosity
is small (hn(k,) < Ro/2H near r = 1R:_),

p R O (1---_) eikz_iwt
-- _ --e . (15)
Po r

In the isothermal inviscid atmosphere, the growth rate of the ratio p/po depends on the

temperature T only. In the presence of viscosity, the damping rate is subtracted from the

growth rate (see the discussion at the end of § 2.1.3).

The approximate local dispersion relation of the dissipative waves is obtained by

substituting the above solution (14) into the wave equation (13) and keeping only the
largest terms

2 4 2 r/o w2
c R® + i----- (16)

Cs 8H2r 4 3 Po C 3"

The real part of this dispersion relation agrees with the ideal dispersion relation for spherical

sound waves (Torkelsson, & Boynton 1998).

2.1.3. Nonlinear Slow Magnetosonic Waves

To understand basic physical mechanism responsible for the evolution of slow

magnetosonic waves in the static, isothermal, spherically stratified atmosphere, we

investigate weakly nonlinear dynamics of the waves under the assumption

P/Po << 1. (17)

We restrict our attention to quadratically nonlinear processes only. Adding quadratically

nonlinear terms to the right hand sides of Eqs. (10) and (11), we rewrite the equations as

0p 1 0 (r2p0Yr): i_]'1, (18)+

where

0

= - o-i( )

cOv,. 20p
Po--_- + Cs--_r + g p = N2,

1 0 (r2Fc¥)N1 - r 2 Or

1 0 (r2pov;)+4 0r2 Or

(19)

(20)

1o )]_-ff_rr (r2v_ . (21)
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Fig. 1.-- Dependence of the linear spherical slow wave amplitude on the distance from the

Sun for four different normalized viscosities fT. The dotted line corresponds to £/= 10 -1°, the

solid line to ¢/= 10 -2, the dashed line to _/= 10 -4 and the dashed-dotted line to £7= 10 -3.

The initial wave period is 600 s. The atmosphere is isothermal with T = 1.4 x 106 K. The

relative amplitude is given by p'(R)[po(R)[Y(1)] -1

It is convenient to put dissipative terms on the right hand side as well.

Equations (18) and (19) can be combined into the weakly nonlinear wave equation

ot2 \ aT] - gN - ot r2aT "

The right hand side terms N1 and i\r2 contain vr, which can be expressed through p

using the linear equation (10). Equation (22) becomes Equation (13) in the linear limit.

In the following, we consider the dynamics of the slow waves, assuming

l qo

<< 1 and C_pooA << 1, (23)

where _ is the wavelength, in addition to assumption (17). Conditions (23) correspond to

the WKB approximation and the approximation of weak dissipation, respectively. These

approximations allow us to consider slow modification of the waves by the weak nonlinearity

and dissipation in the WKB approximation. The latter means that we neglect the wave

reflection from the radial inhomogeneity.
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Fig. 2.-- Dependence of the nonlinear spherical slow wave amplitude on the distance from

the Sun for four different initial amplitudes A = p(1)/rh0(1). The solid line corresponds to

A = 10 -6, the dotted line to A = 0.02, the dash-dotted line to A = 0.08 and the dashed

line to A = 0.16. The initial wave period is 600 s. The atmosphere is isothermal with

T = 1.4 x 106 K. The normalized viscosity is f/= 3.2 x 10 .4 (i.e., "typical solar value"). The

relative amplitude is given by p'(R)[po(R)p'(1)] -1,

Considering an outwardly propagating wave, we transform into the moving frame

= r - Cst, R = er, (24)

where the parameter e is small, representing the slow modification of the wave by the weak

nonlinearity, stratification and dissipation. This allows us to apply the standard method

of slowly varying amplitudes. Keeping terms of the first order of e only, we have from

Eqs. (19), (20) and (21) we get

C_ C, 0 2 4rloC, c)2p
= - N2- (25)

Po po-O-_ p' 3po O_2'.

and, finally, arriving at the evolutionary equation,

o 3C  o(R)o  

Equation (26) is a spherical analog of the Burgers equation for slow nlagnetosonic waves.

When all three factors of the wave evolution (the stratification, nonlinearity and dissipation)



-9-

q)
q:?

o._

O

©
>

©

q)
02

0.20

0.10

0.00

-0.10

) :'/

:_x x

- ..,

-0.20 ................

0 200 4-00 600 800 10001200

Time (s)

Fig. 3.-- Evolution of temporal dependences of initially harmonical nonlinear spherical

Alfv6n waves with the distance from the Sun. The solid curve corresponds to the solution

at R' = 1Re, the dotted at R' = 1.15RQ, the dashed to R' = 1.3RG and the dash-dotted to

R' = 1.5Ro. The initial wave amplitude is A = 0.08. The initial wave period is 600 s. The

atmosphere is isothermal with T = 1.4 x 106 K. The normalized viscosity is F?= 3.2 x 10 -4.

The relative amplitude is given by p'(R)/po(R).

modeled by the second, third and forth terms of Equation (26), respectively, are negligible,

the wave form p is independent of R (p(R) = const). Consequently, the wave keeps its

shape in the moving (with the speed Cs) fl'ame of reference. When some of the evolution

factors are taken into account, the wave form p depends on R, so the wave changes with the
distance from the Sun.

For the following consideration, it, is convenient to introduce the dimensionless variables

_'=_/R_, R'=R/RQ, P'=P/Poo, H'=H/Ro, p'o=Po/Poo, (27)

where H is the scale height. With variables (27), equation (26) can be re-written as

On-_;+ + 2H'R '_ p + po(R,) p O_' po(R') O_'2 - O, (28)

2
where F7= 577o/C_pooR_.

When both nonlinearity and viscosity (the third and the forth terms) are negligible,
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Equation (28) is easily integrated,giving us

1
P'(R') = Pl(1)_-7 exp [-_H, (1 - _--7) ] • (29)

The linear solution (29) resembles solution (6) for a harmonic wave, but Eq. (29) is valid

for waves of arbitrary initial shape as long as they satisfy conditions (23).

Both the effects of stratification and viscosity can be taken into account for a harmonic

wave

p(R',{') = f_'(R') exp(ik{'), (30)

where k is a dimensionless wave nmnber. Substituting expression (30) into Equation (28)

(where the third term, corresponding to nonlinearity, is neglected), we obtain

p, 1 1 (1____;,)]= (I)_ exp [-_-7

Expressing the integral through the exponential integrals Ei(x), we have

(31)

, 1
/)I(R') = P (1)_ exp [-_Hi (1 - _--T) ]

({ , l 1 /-/'11[(1)--_-7 - (
X exp Ok 2 1 - Re_(1-_) + -:::..e_ Ei Ei

Expression (32) shows that there are two different scenarios of the wave propagation.

When f/k 2 is less than the critical value (Ok2)_, the relative amplitude of the wave, P'/Po

initially grows, reaches a maximum, and then decays. For f/k 2 > (0k2)_, the wave decays

from the very beginning. Dependence of the wave amplitude on distance from the Sun for

different values of the viscosity are shown in Figure 1. The dotted curve corresponds to the

dissipationless solution (29). When the medium has finite viscosity, the wave either reaches

a maximum and then decays or decays from R' = 1Ro. To determine the critical value of

the viscosity (0k2)_, we expand the function P'/po into a Taylor series near R' = 1:

P_/Po "_ 1 + (2;, 1- rIk2) (R'- l).

From the condition that the coefficient with R' - 1 changes sign, we obtain

(33)

(f/k2)c _ 1
2H' 1. (34)
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For a given viscosity,waveswith wavelengthsshorter than

_/ 2H'f/,\<2re l- 2H' (35)

are decaying at B' = 1Be. For a given wave period P, waves are decaying at B' = 1RQ for

viscosities higher than

0> 27rR,_.j/ (2H' 1). (36)

Consequently, only sufficiently long wavelength slow waves are propagating along

plumes. However, if the relative wave amplitude grows with the distance from the

Sun, nonlinear effects, described by the third term in Equation (28), come into play.

The nonlinear generation of higher harmonics transfers the wave energy into the short

wavelength part of the spectrmn, where the strong dissipation takes place. Thus, waves

of higher amplitude are subject to stronger dissipation. This is shown in Figures 2 and

3. Figure 2 shows the growth of the wave amplitude for three different initial amplitudes.

(The curves are normalized oil the initial amplitudes). The waves of higher amplitudes

reach their maxima quicker. In the vicinity of the maximum, the wave amplitude decays

due to nonlinear dissipation. Nonlinear evolution of the wave shape is shown in Figure 3.

Initially, the outward propagating wave grows and its shape steepens departing from a

simple harmonic shape. Finally, as the wave propagates outward, its amplitude decreases

and the waves returns to the initial harmonic shape.

The analytical theory allows us to understand main features of short wavelength

dynamics of slow magnetosonic waves in the radially stratified static atmosphere, taking

into account effects of weak nonlinearity and dissipation. However, the analytical theory is

based upon assumptions (17) and (23). In particular, the assumption that the wavelength

is much less than the scale height, is not well justified for modeling of the slow waves in

polar plumes. Also, effects of two-dimensional structuring as well as radial plasma flows,

which affects the waves, are out of scopes of the analytical theory. Thus, in in the next

section we present the results of more realistic quantitative modeling of the waves using the
nonlinear dissipative 1D, and 2D MHD model.

2.1._. 2D MHD Results

The purpose of the 2D MHD simulations is to investigate the effects of the plume

density and temperature structure on the propagation and the dissipation of the slow

magnetosonic waves. The 2D MHD simulations are initiated with the normalized number

density and temperature profiles that represent a polar plume
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rt0(0, T) = [rtmin Jr-(1 -- ftmin)C -[(0-Tr/2)/d]4] n0(r),

r(o, r) = rmax - (rmax - Train) e -[{0-_r/2)/d]4

(37)

(38)

where the angular plume half-width d = 0.04 Rad, and the normalized density of the

surrounding coronal hole nmin = 0.3, with the normalization no(l) = 1 at the center of the

plume. The normalized temperature in the center of the plume Tmin = 0.8 is lower than

the normalized temperature of the surrounding corona T, nax = 1. The 0 dependence of no

and T is shown in Fig. 4. In the uniform magnetic field, such structure is a waveguide for

trapped fast and slow magnetosonic waves. The initial radial dependence of v_ and no is

given by Parker's (1963) isothermal solar wind solution.

The initial magnetic field B = Bo(r)e_ is uniform in the 0-direction and varies as
1

_. We use the following typical coronal hole parameters in our 2D run noo = 5 x 10s

cm -3, B0= 10G, v4 =975 kms -_, Cs= 152kms -I, r4 =718s, and we set S= 106 ,

7?0 = 5 x 10 -5, and T = 1.4 x 106K.

For the upper boundary of the plumes and at the 0-boundaries we use open boundary

conditions. We allow for incoming characteristics at the solar boundary by using

zero-order extrapolation for the variables (e.g., Steinolfson & Nakagawa 1976). The density

perturbation hi(O, r = 1, t) is driven harmonically with the frequency oJ = 7.5 and an
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Fig. 5.-- A snapshot at t = 8.55ra = 102.2 rain of the spatial variations of the perturbed

density hi, vr, n, and S_ due to the propagating slow magnetosonic wave in the model polar
plume.

amplitude of rtd = 0.08:

nl (0, r = 1, t) = nd e-[(°-_/2)/4_sin_zt. (39)

The magnetosonic waves that are excited with the above driver are not coupled to Alfv_nic

fluctuations since 0/0¢ = 0. Thus v, and B e remain zero throughout the simulation in the

plume. The slow wave is coupled to v0 and Bo. However, the perturbations in v0 and Bo
remain small in our runs.

We solve the 2D MHD equations using the fourth order Runge-Kutta method for

temporal integration and fourth order spatial differencing with 600 grid points in the radial

direction and 40 grid points across the half-width of the plume. We use symmetry boundary

conditions at the center of the plume. In Figure 5 the spatial variations in the perturbed

density hi, Vr, n, and Sv at t = 8.55_4 = 102.2 min are shown.

The spatial variation in n_ and vr are nearly in phase, as expected from the linear

theory of traveling waves in a dissipative medium. It is evident that the plume width affects

the shape of the waves and leads to trapping of the waves. However, small amplitude

magnetosonic waves can be detected outside the plume. This could be due to the energy

contained in the tails of the Gaussian shape driver (Eq. (39)), small leakage of the wave
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Fig. 6.-- The temporal variations of nl and vr in the plume at r = 1.20 and 0 = 1.57 due

to the propagating magnetosonic wave.

energy outside the plume, or evanescent tails of the trapped modes. The lower temperature

inside the plume compared to the surrounding corona results in lower sound speed there.

This leads to the bending of the wave fronts, and the corresponding bending of the viscous

dissipation layers.

The amplitude of the waves is small (hi�no << 1), and the solution is nearly linear

near the solar surface. As the magnetosonic waves propagate outwards, the quantity nt/no

increases and the nonlinear steepening of the waves becomes apparent. The steepening

of the waves is limited by the presence of the viscous dissipation, and no shocks can be

formed. However, the sharper gradients near the wave fronts lead to enhanced viscous

dissipation there. The heating is distributed along the plume by the propagating waves up

to a distance determined by the dissipation length of the waves.

In Figure 6 we show the temporal variation of vr, and nl at r = 1.20Ro and 0 = 1.57

(i.e., near the central axis of the plume). It is evident that the modeled density and velocity

fluctuations of the traveling waves are in phase, as expected from the linear theory. The

nonlinear steepening of the wave fl'onts and the resulting asymmetry in the shape of the

waves is evident in the temporal evolution. The steepening is limited by the presence

of compressive viscosity. Nonlinearity also modifies the initial hydrostatic background

equilibrium and leads to changes in the wave amplitude and phase speed with time.

The effects of nonradial plume divergence on the propagation and the dissipation of
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Fig. 7.-- A snapshot at t = 5.30%_ = 63.4 min of the spatial variations of the perturbed

density nl, v_, n, and Sv due to the propagating slow magnetosonic wave in the nonradial

model polar plume with d = 0.01 at r = 1Ro.

the slow magnetosonic waves are investigated by adding a quadrupole component to the

radial background field:

g

Bo 3B4(3 cos 2 0- 1)

r 2 2r4

3B4 sin 20

er 2r 4 eo, (40)

where we set B0 = 0.1 and B4 = 0.6 to get and B(1,Tr/2)=1 and an asymptotic divergence

rate of 10. At r = 2Ro the cross sectional area of the plume diverged by a factor of about

3. At r = 1RG we set d = 0.01, and we model this divergence rate in the density structure

of the plume by substituting d ---, d(r) = d(1) Br(r, _/2)1/2r in Equations (37)-(38). Bo, and

the 0 dependence of B_ is neglected in the divergence factor due to the small angular extent

of the plume. The initial radial dependence of the density is taken to be locally hydrostatic

with the temperature T(r, 0). The initial state evolves to a self consistent solution during
the 2D sinmlation.

The spatial dependence of the solutions for the nonradial plume is shown in Figure 7

with no = 5 x l0 s, a_ = 7.5, T(O = 7r/2) = 1.12 x 106 K. The faster-than-radial expansion

of the plume is evident in the spatial structure of the density. The main difference between
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Fig. 8.-- The temporal variations of nl and v_ in the plume at r = 1.20 and 0 = 1.57 (solid),

0 = 1.58 (dotted), 0 = 1.59 (dashed), 0 = 1.60 (dash-dot), 0 = 1.61 (dash-dot-dot-dot) due

to the propagating magnetosonic wave for the case in Figure 7.

the radial and the nonradially divergent plume is in the morphology of the wave, Sv, and

the v_. The perturbations of the density are excited at the base of the plume and expand

across the plume as they propagate upward. The density fluctuations are in phase with

velocity fluctuations. The enhanced radial velocity of at the edges of the plume is due to

the increase pressure gradient at the plume boundary. The viscous dissipation of the waves

is more concentrated at the center of plume than in the radial case.

The temporal evolution at r = 1.2R e at several locations across the plume and the

coronal hole are shown in Figure 8. It is evident that the phase speed, and the amplitude

of the waves varies considerably across the plume. At r = 1.2Re initial state evolves to

a self-consistent solution within about 1.5rh. The long term variations are due to the

nonlinear evolution of the density and velocity in the plume and the surrounding coronal
hole.

2.2. Two Fluid Coronal Hole Model

Neglecting electron inertia (m_ << rnp; V = Vp; p = mpn), and relativistic effects

(V << c), assuming quasi-neutrality (n = n_ = np), neglecting minor ions, we get the 2-fluid
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MHD equations

Op

0-t- + V-(pV) = 0, (41)

[0v ]p _ + (v. v)v = -(vp_ + Vp_) a_Z,p !ar2 + x B - V-l-I, (42)C

0B _ __I vpe
Ot cVxE, E=- V×B+r/J+ axB--- (43)

C n. eC Tle '

VxB= 47r j, V_=V---,J (44)
C YtC

Opp Ope

Ot- = -TpppV. V - V. Vpp + Sv, Ot - -%p_V. V_ - Ve • Vp_ + Se, (45)

In the above equations we use the following normalization: r _ firs; t _ t/ra; V --, VIVA;

B _ B/Be; p --* PIPe; Pp _ Pp/Ppo; Pc _ P_/P¢o. S = rT/'ra the Lundquist number,

rT = 4¢ra2/uc 2 the resistive time scale, rA = a/VA the Alfv6n time scale. In coronal holes

for the relevant scales of O(0.01 - 1Re) the Hall term and the electron pressure terms are

small in the Ohm's law compared to the other terms, and V v _ Ve. The Ohmic heating

term in the electron energy equation is S_ = (7_ - 1)j2/S, Pi is the viscous stress tensor,

and S_. is the viscous ion heating term.

To model the effect of random disturbances on the generation of waves we use a

broad-band Alfv6n wave source at r = 1Re given by

B,(t,O,r= 1)=--Vd/VA,_F(t,O)
100

F(t,O) = y_ aisin(coit + Fi(O))
i=1

(46)

(47)

where a, = aoi-1/4, a0= 0.115,_ = coa+ (i - 1)Ace,A_ = (co N _ co1)/(d¥ _ 1), and F, is a

random phase. We use frequencies in the range of 1.4-6.9 mHz.

2.2.1. Results of the 2-fluid Model

In Figures 9-13 we show the results of the two-fluid run with the physical parameters

% = 1.1, % = 1.05, Tpo = 2 x 106 K, T_o = 0.8 x 106 K, no = 108 cm -3, B0 = 7 G,

VA = 1527 km/s, Vd = 0.06. The Lundquist number is set to S = 104.

The spatial dependence of the velocity components and the density at t = 130<4 = 16.5

hrs are shown in Figure 9. The Alfv_nic velocity component v_, (bottom right panel)

fluctuates out-of-phase with B, (see Figure 10) as the waves propagate in the coronal hole.
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Fig. 9.-- The spatial dependence of the density and the velocities in the model coronal hole

at t = 130rA = 16.5 hrs.

The fluctuations in v, were used to calculated the effective proton temperature discussed

below. The vT (bottom left panel) reached about 400 km/s near 'r = 10Ro and has not

approached the asymptotic speed in this region. The fluctuations in vT in the central region

of the coronal hole are due to the nonlinear compressional waves driven by Alfv_n waves.

The v0 remains small throughout the coronal hole. We have used the linearly polarized

Alfv_n waves as the driver at the coronal boundary. Including other polarizations may

produce larger re.

In Figure 10 we show the corresponding magnetic field components and j2/p

(proportional to the Ohmic heating per particle). It is evident that the largest gradients

in B, occur at the boundaries of the coronal hole, defined by the transition from low to
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Fig. 10.-- The spatial dependence of the magnetic field components and j2/p in the model
coronal hole at t = 130_4 = 16.5 hrs.

high density regions. The phase-mixing of the Alfv6nic wave fronts leads to the generation

of currents (see, also in this issue). The large currents in these regions lead to heating

of the electrons via Ohmic dissipation, which is evident in the electron temperature (see

Figure 11) below. The fluctuations in Bo are small compared to B e in accordance with the

small fluctuations in vo. The variations in B_/p °-S are due to the effects of the nonlinear

compressional waves.

The 2D distribution of the electron temperature in the model coronal hole is shown in

the left panel in Figure 11. The electron temperature decreases from 0.8 x 106 K at the

base of the corona to about 0.6 x 106 K at 10Ro. Two regions of somewhat higher electron

temperature are evident in the model coronal hole in the boundary between the low and
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Fig. 11.-- The spatial dependence of the electron and proton temperatures in the model

coronal hole at t = 130rA = 16.5 hrs.

the high density regions. The higher temperature is the result of the Ohmic heating due

to phase-mixing of the Alfv6n waves in the inhomogeneous regions (see j2/p in Figure 10).

The proton temperature (right panel) is not affected by the Ohmic heating and decreases

nearly monotonically from 2 x 106 K at r = 1Ro to 0.9 x 106 at 10Re.

The radial dependence of the electron and proton temperatures and of v_ and t,_ are

shown in Figure 12. The fluctuations due to the nonlinear waves driven by the Alfv6n waves

are evident in the v_, Tp, and T¢. The nonlinear waves contribute to the acceleration of the

solar wind in addition to the thermal gradient.

In Figure 13 we show the temporal evolution of the velocity components (top panel)

and the density perturbation (bottom panel) at r = 4.98//o at the center of the coronal

hole. It is evident that the fluctuations due to the nonlinear waves in v_ and pl are in phase

as would be expected for compressional longitudinal wave. The Alfv6nic fluctuations of the

'v4 are dominated by higher frequency than the nonlinear compressional wave.

In Figure 14 we show the effect of v4 on the line-width temperature. The dashed line

shows the time-averaged proton temperature obtained form the model. This temperature

is decreasing as expected from the Polytropic energy equation. The solid line shows the

effective line-width temperature that incorporates the effect of waves on the simulated line

width. The effective temperature calculated using Zp,elf = Zp q- _Ge_< V_t_2>, is due to
2kb

unresolved wave motions integrated over the line of sight in space and about 4 hours in

time. It is evident that the effective line-width temperature increases with r in qualitative

agreement with SOHO UVCS Ly-c_ observations Kohl et al. 1998. In the period covered by



21-

2,0x106

|.5x106

I OxlO 6

cZ

_- 50x105

500

4 O0

'w
"_- 200

0

-200

-400

-600

2 4 6 8 10

R

Spat;a1 plot at t;me= 129.578; t.heta= 1.56754

2 4 5 8 }0

Fig. 12.-- The radial dependence of Tp (solid line) and T_ (dashed line) at the center of the

model coronal hole are shown in the top panel. The vr (solid line) and the v_ (dashed line)

are shown in the bottom panel.

this report we have further explored the parameter space of the solar wind with the 2.5-D

two-fluid model. We have including the effects of self-consistent heating of the electrons

by Ohmic dissipation, and heating of protons by viscous dissipation. We found that with

millihertz range Alfv4n waves the solar wind will be heated beyond several solar radii,

provide that strong phase mixing of the AlfvSn waves is present.

3. Analysis

Motivated by recent observations of slow magnetosonic waves in polar plumes

by the EIT we investigated the propagation, and the dissipation of these waves. We

derived the linear dispersion relation for these waves in the viscous plume plasma, and

spherical geometry. We included the effects of weak quadratic nonlinearity and derived an

evolutionary Burgers' type equation for these waves with the main assumptions of weak

nonlinearity, short wavelength (compared to the scale height), and no background solar

wind flow. Numerical solution of the evolutionary equations show the dependence of the

wave amplitude with height. To relax the above assumptions we used the 1D and the 2D

MHD equations to model the propagation, and the dissipation of the slow waves in plumes.

The MHD models included compressive viscosity, self-consistent nonlinear effects, and

background solar wind flow. The results of the simulations describe the dynamics and the
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Fig. 13.- The temporal evolution of u_ (solid line, top panel), v, (dashed line, top panel)

and the perturbed density (bottom panel) in the center of the coronal hole.

dissipation of the waves for a range of coronal parameters.

The required energy flux to heat the corona (i.e., to balance the radiative and

conductive losses) is about l0 s ergs cm -2 s -1. The energy flux carried by the slow

magnetosonic waves is given by p(-_Cs in the WKB approximation. For n = 5 x 108

cm -a and T = 1.4 x 106 K, the required wave amplitude to obtain sut_cient energy flux

to balance the losses is 40 km s -I. This wave amplitude is consistent with the observed

nonthermal broadening of emission lines (e.g, Chae, Schuhle, & Lemaire 1998). The direct

observation of slow magnetosonic waves in coronal plumes by DeForest and Gurman (1998)

using the EIT instrument shows that these waves are present in coronal hole plumes.

Slow magnetosonic waves with an amplitude of 40 km s -1 (about 27% of the sound

speed) carry an order of magnitude more energy than the _15 km s -] that were seen in EIT

observations. The 40 km s -_ waves are in the nonlinear regime with significantly shorter

dissipation length than the length predicted by the linear theory. We found numerically

that due to nonlinear steepening of the wave fronts the dissipation length near the Sun is

about 0.08RG for these waves, compared to 0.14Ro for the 15 km s -_ waves with 300 s

period and solar value of compressive viscosity.

The short dissipation length of high amplitude five-minute slow magnetosonic waves

will make them hard to detect by the EIT instrument, since the signal would be dominated

by the longer period, smaller amplitude waves that have longer dissipation length. In
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Fig. 14.--- Effective (i.e., including the effect of waves) and model line-of-sight time-averaged

proton temperatures.

addition, the available cadence of EIT does not allow observations of waves with periods

below _6 minutes. The UVCS WLC observations at 1.9Ro reported by Ofman et al. (1997,

1998) are at higher cadence of _ 90 s. Our simulations show that most of the waves in the

millihertz frequency range would be dissipated by 1.9Ro for solar value of the compressive

viscosity with T = 1.4 x 106 K. The detection of these waves at 1.9Ro possibly indicate that

the effects of compressive viscosity are somewhat lower allowing the slow wave to propagate

to 1.9RG. This could be due to somewhat lower temperature, or higher density than the

values used as "typical" solar values in our study. It is also possible that the slow waves are

generated locally above 1Ro.

We extended OD model by using more realistic parameters and source terms in the

MHD equations. We improved the numerical technique and geometry of OD, replacing

the hydrostatic initial state with Parker's (1963) isothermal solar wind solution and with

more complex initial magnetic field, and source terms. In particular, we found that the

low frequency Alfv_n waves with a period of about an hour drive LAN waves in the radial

flow velocity, which contributes significantly to the acceleration of the solar wind in coronal

holes such that the fluctuating solar wind speed at 32R® agrees with the observed fast solar

wind speed of 500 - 900 km s -1 (Grail et al. 1996). We found that in order to heat the

solar wind to 106 K we need to deposit the heating close to the Sun by including strong

phase mixing in solar wind inhomogeneities. We found that the dynamical evolution and

the spatial variability of the LAN wave driven wind are in better qualitative agreement
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with observationsthan the slowlv varying, thermally driven and WKB Alfv6n wavesolar

wind models(for a review of recentmodelsand observationsseeWinterhalter et al. 1996).

We includeda broad-bandspectrumof the Alfv6n wavesand investigatedthe effectof
two-temperatureelectron-ionplasmaof the solar wind on the signaturesof the wavesthat
would beexpectedfrom the SOHOUVCS observations.For this purposewe havesolved
the two-fluid MHD equationsand found that the effectiveproton temperature in the model
increaseswith height. The extensionof our model into the two-fluid description with a
broad bandAlDen wavesourceand more realistic heating terms enablesus to include more
realistic electronand proton temperatures.

The SOHO/UVCS observationssuggestthat Tp > Te in coronal holes. We use the

two-fluid 2.5D MHD model to investigate the self-consistent acceleration and heating of the

two-temperature electron-proton plasma by a broad band AlfvSn wave source. We calculate

the effective line-width proton temperature using the results of the 2.5D two-fluid model,

an increase of the line-width proton temperature with heliocentric distance. This effect is in

qualitative agreement with UVCS observations of the increase of the Ly-o_ line width with

height.

Our coronal hole model suggest that the observed increase of the line-width proton

temperature is due to temporally and spatially unresolved low-frequency wave motions of

the protons. Thus, the MHD waves may contain a significant fraction of the solar wind

energy in the lower corona, and therefore, may play an important role in the acceleration

and heating of the fast solar wind.

4. Recommended further action

We plan to improve the energy equation in our model by relaxing the polytropic

assumption and to investigate the effects of a realistic heat conduction term. Due to the

small time step required to correctly describe the thermal conduction with an explicit

numerical method we are able to include the heat conduction terms in the 1D version of our

2D code. In order to eliminate this limitation and use the full 2D capabilities of our code

we plan to use an implicit method for the energy equation. This will allow to include the

heating terms due to waves more realistically in our model. We will also plan to extend the

plume study to the multi-fluid model with the more realistic energy equations for proton

and electrons, and with self consistent heating terms. We plan to further improve the

execution speed of our code by continue the optimization for parallel execution on the Cray
T3E.
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In the third year of this project weplan to expandour model in two ways: (1) weplan
to include a secondion fluid in the equations,and thus to developa three-fluid model.
This is neededin order to understandrecentSOHO/UVCS observationsof the solar corona
in Oxygenemissionat 10325and in other minor ion emission;(2) we plan to expand our
model into a full 3D description,which will allow to usemore realistic model of a coronal
hole and solar boundary conditions. For this purposewewill include the c9/0_ terms in our

single fluid model, and investigate various methods of solutions, and the effect of boundary

conditions. Initially, we will develop the code on our SGI workstations. Next, we will

investigate the timing and the efficiency of the solution on the Cray J90 and the Cray T3E.
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